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​ Music and mathematics may seem like distant domains—one expressive, emotional, and 

subjective; the other logical, precise, and abstract. Yet, at the level of sound, these domains 

overlap almost completely. Fourier analysis offers a powerful lens: It shows that every musical 

tone, however rich or complex, can be understood as a sum of simple waveforms. This article 

explores how Fourier analysis connects to musical sound (pitch, harmony, timbre), how it is 

applied in practice (signal processing, pitch detection, synthesis), and some of the broader 

implications and limitations of this perspective. 

1. Historical and conceptual background 

1.1 Early connections: ratios, harmonics, and Pythagoras 

The idea that music is mathematical is ancient. 6th century BCE mathematician 

Pythagoras discovered that certain intervals, such as the octave and the fifth, correspond to 

simple integer ratio of string lengths or frequencies (Hammond, 2011). For instance, halving a 

string’s length doubles its pitch, creating an octave, and a ⅔ of a string produces a “perfect fifth” 

above the original. These integer-ratio relationships lie behind the harmonic series, the infinite 

sum of positive unit fractions (Hammond, 2011; The Math Behind Music, 2023). 

When a musical instrument plays a note, it does not just produce a pure sine of the 

fundamental frequency; rather, it emits many overtones or harmonics at integer multiples of that 

fundamental. These harmonics add richness and “color,” also known as timbre, to the sound (The 

Math Behind Music, 2023; Hammond, 2011). 



However, Western music’s tuning often compromises its modulation systems—the pure 

ratios of natural harmonics do not allow perfect transposition into all keys. The development of 

equal temperament, dividing the octave into twelve equal semitones via the twelfth root of 2, is 

one such compromise to allow modulation across keys, though it slightly shifts many harmonic 

intervals. (The Math Behind the Music, 2023) 

1.2 Fourier, heat, and harmonic analysis 

​ Joseph Fourier (1758-1830) originally developed the theory of Fourier series as a tool to 

solve problems in heat conduction. His insight was that an arbitrary “reasonable” periodic 

function can be expressed as a possibly infinite sum of sines and cosines (Fourier, 1822/1878). 

This notion later evolved into the broader domain of harmonic analysis, which related function 

spaces, frequency decompositions, and transformations between time and frequency domains 

(Duke Lab Manual, 2005). 

​ Though Fourier’s initial motivation was thermal, his work turned out to have deep 

relevance for acoustics and signal processing: A sound wave is a time-varying pressure function, 

which can be analyzed using the same mathematics  (Duke Lab Manual, 2005). 

​ Deanna Lenssen, professor at the University of California, Los Angeles, and Nathan 

Needell, a former student of Claremont Colleges, presented a clear introduction to this topic: By 

starting with continuous Fourier transforms, then specializing to the discrete, sampled domain 

relevant to digital audio, they demonstrate how one can extract musical structure, such as note 

frequencies and chord content, from a recording (Lenssen & Needell, 2014).  

 



2. Historical and conceptual background 

2.1 Fourier series for periodic signals 

​ A fourier series expansion writes a periodic function x(t) with period T as: 

 

Where the coefficients ak , bk are determined by integrals over one period. These coefficients 

encode the amplitude of each harmonic. In music, one often compactly rewrites it in complex 

exponential form:  

 

The magnitude |ck| gives the strength of the k-th harmonic. (Bell, Project Rhea; Lenssen & 

Needell, 2014). 

In practice, we truncate the infinite sum, because real musical signals have finite 

bandwidth. Beyond a certain frequency, contributions are negligible. 

2.2 Transition to discrete time: DFT and STFT 

​ When working with digital audio, the continuous signal is sampled at discrete times 

tn-n∆t. One uses the Discrete Fourier Transform(DFT): 

 



The inverse transformation reconstructs xn from the Xk. (Lessen & Needell, 2014). 

To capture how the spectrum evolves over time—since music is not strictly stationary— 

one uses the Short-Time Fourier Transform (STFT): apply a sliding window on segments of the 

signal and compute DFTs on each segment. This gives a time-frequency representation, also 

known as a spectrogram. 

Computationally, the DFT is too slow for large N, so algorithms like Fast Fourier 

Transform (FFT) reduce complexity from O(N2) to  O(N log N) (Rocksmaths Fourier Analysis in 

Music, 2025). 

2.3 Theoretical bounds: Norm behavior and Hausforff-Young 

When considering the relationship between a signal and its Fourier coefficients, the 

Hausdorff-Young inequality offers an important bound: If  for , then its 𝑓 ∈  𝐿𝑝 1 ≤ 𝑝 ≤ 2

Fourier transform lies in , where  (Hausforff-Young inequality, n.d.). 𝐿𝑝' 1
𝑝 + 1

𝑝' = 1

This ensures that, under mild regularity, Fourier coefficients decay in an average sense, 

which in musical signal terms implies that higher harmonics tend to have smaller amplitudes and 

less perceptual weight (though the decay rate depends on the smoothness of the original 

waveform). This mathematical grounding helps us understand why we often observe only a finite 

number of dominant harmonics in musical spectra and why truncating to a finite number of 

harmonics is often reasonable. 

 



3. Historical and conceptual background 

3.1 Pitch and fundamental frequency identification 

A core musical problem is: Given a sound recording, how do we find the fundamental 

pitch (i.e. the lowest active frequency)? The DFT/FFT can reveal a peak at the fundamental 

frequency, but real instruments often have weak fundamentals or strong overtones, complicating 

detection.  

Tandon and Goncharov (2025) show that applying DFT to chromatic chords, scales, and 

intervals allows one to identify pitch content and harmonic structure precisely. Their experiments 

on both digitally generated and recorded samples confirm that DFT achieves accurate 

fundamental identification and harmonic transcription (Tandon & Goncharov, 2025). 

Lessen & Needell (2014) similarly use illustrative examples of chord signals, applying 

DFT and mapping spectral peaks of pitches and chord structure. 

 

3.2 Timbre and spectral fingerprinting 

Timbre is what makes a flute playing A4 sound different from a violin playing A4, even 

though their fundamental frequency is the same 440 Hz. Timbre arises from the strengths and 

distribution of harmonics, and from dynamic behavior (attack, decay, envelope). Fourier analysis 

reveals the spectral fingerprint of an instrument: the relative magnitudes of harmonic partials 

(and even inharmonic components). 

In “Analyzing Musical Tones with Fourier Transformation,” Hong compares trumpet, 

piano, and flute spectra and shows how different decay rates and harmonic amplitudes 

distinguish instruments acoustically (Hong, n.d.). 



The idea of additive synthesis—summing sine waves at appropriate frequencies and 

amplitudes—is effectively the inverse problem of Fourier analysis: One can reconstruct or 

approximate a complex sound from its spectral components (Additive synthesis, n.d.). In digital 

synthesis, this process is common, especially in modeling realistic instrument sounds. 

 

3.3 Spectral texture and computer music 

Fourier analysis lies at the heart of modern computer music and digital audio. Reich’s 

article “Fourier at the Heart of Computer Music” revisits how Fourier theory underpins timbre 

modeling, texture synthesis, and spectral manipulation in electronic music systems (in the 1960s 

onward) (Reich, 2019). 

In effect, composers and sound engineers can manipulate the spectral coefficients ck 

directly to sculpt tone color, filter noise, create spectral morphing, or cross‐synthesize timbres. 

An example of a more advanced application is midiVERTO, a web tool that visualizes 

tonality over time. It applies a discrete Fourier transform in the pitch‐class domain (i.e. mapping 

frequency bins to pitch classes) and shows trajectories of Fourier coefficients related to harmonic 

function, triadicity, and diatonicity—making music theory, signal processing, and tonality more 

accessible (Harasim, Affatato, & Moss, 2022). 

In a more mathematical direction, Gazor & Shoghi (2020) apply Fourier‐based spectral 

vectors to link spectral amplitude envelopes with differential dynamic systems (via Hopf 

bifurcations) to model tone coloring over time, blending nonlinear dynamics with spectral 

analysis (Gazor & Shoghi, 2020). 

 



4. Worked examples and demonstration 

4.1 A simple example: synthetic tone + overtones 

​ Suppose we construct a synthetic musical tone:

 

Where f  is, say, 440 Hz (A4), and A1, A2, A3 are amplitudes (e.g. 1, 0.5, 0.3). 

​ If we sample x(t) discreetly and run an FFT, we should observe three peaks in the 

frequency at 440, 880. 1320 Hz, with magnitudes proportional to A1, A2, A3. This simple case 

illustrates the core principle: Peaks in the spectrum correspond to individual sinusoids in the time 

domain. 

 

4.2 Real instrument: piano spectrum 

A recorded note of a piano (say middle C, ~261.63 Hz) examined via STFT reveals a 

strong peak at ~261 Hz and multiple harmonics (2×, 3×, 4×, etc.). The relative strengths of these 

harmonics diminish, but anomalies appear due to inharmonicity (slight deviation from perfect 

integer multiples owing to stiffness in strings). 

By inspecting how the harmonic amplitudes fall off and how partials shift, one can 

compare the spectral “envelope” of various notes to characterize the instrument's timbre and 

response. Hong’s analysis uses such comparisons (Hong, n.d.). 

 

4.3 Chord analysis 

When multiple notes are played (a chord), their harmonic spectra intermingle. One 

approach is to sum the separate spectra; peaks can cluster or overlap. Lenssen & Needell (2014) 



use DFT to analyze chord signals, locating peaks and mapping them to pitch classes. This 

process must manage aliasing, windowing effects, and spectral leakage, but using appropriate 

window functions (Hamming, Hann) and sufficient resolution often produces robust results. 

5. Benefits, challenges, and extensions 

Fourier analysis offers an elegant and unifying framework that connects the time 

domain—how sound waves evolve over time—with the frequency domain, which reveals the 

structure of sound as a composition of individual frequencies. This duality allows researchers 

and musicians to bridge the gap between mathematical abstraction and artistic expression. One of 

the most significant benefits of this approach is that it provides a quantitative method for 

understanding and manipulating sound. By transforming a signal into its frequency spectrum, 

Fourier analysis makes it possible to isolate, identify, and modify the components that give rise 

to pitch, timbre, and harmony. For engineers, this means being able to filter noise or design 

sound systems with precision; for composers and producers, it means being able to shape tone 

color and texture in ways that were once purely intuitive (Reich, 2019). Fourier analysis gives 

musicians and mathematicians a shared language. It enables collaboration across fields that once 

seemed unrelated: Digital signal processing, acoustics, computer science, and music theory now 

rely on the same mathematical concepts of superposition, periodicity, and transformation. 

Through techniques like spectral analysis and additive synthesis, Fourier theory makes it 

possible not only to study sound but also to construct it from first principles. Composers who 

work in electronic and computer music often use spectral coefficients directly to sculpt 

sound—stretching, filtering, or morphing timbres in real time (Harasim et al., 2022). 

Despite its versatility, the Fourier approach also faces several challenges and limitations. 

One of the most fundamental is the time-frequency trade-off, often described through the 



Heisenberg uncertainty principle. In practice, this means that it is impossible to know both the 

exact frequency and the exact timing of a sound event with perfect precision. If one uses a wide 

time window, the frequency resolution improves but temporal detail is lost; if the window is 

narrow, time localization improves but the frequency spectrum becomes less precise. Music, 

being highly dynamic, often requires a balance between these extremes. Techniques such as the 

Short-Time Fourier Transform help mitigate this issue, but they do not eliminate it entirely. 

Another challenge arises from the nonstationary nature of musical signals. Unlike steady 

physical vibrations, musical tones change in pitch, loudness, and timbre over time. Real 

instruments also deviate from ideal mathematical models because of inharmonicity, resonance, 

and imperfections in tuning. For example, the overtones of a piano string are not exact integer 

multiples of the fundamental frequency due to string stiffness, causing the sound spectrum to 

spread slightly (Hong, n.d.). These deviations can complicate spectral analysis, producing small 

errors in pitch or harmonic identification. There are also computational considerations. Digital 

implementations of the Discrete Fourier Transform (DFT) can suffer from spectral leakage, 

aliasing, and windowing artifacts if the sampling rate or analysis parameters are not chosen 

carefully. These issues can distort the apparent frequency content of a signal and must be 

addressed through proper signal preprocessing and parameter tuning (Lenssen & Needell, 2014).  

In addition to these mathematical and computational limitations, it is important to 

acknowledge the perceptual dimension of music. Human hearing does not perceive sound strictly 

according to amplitude or frequency magnitude. Psychoacoustic factors—such as masking, 

context, and harmonic expectation—play crucial roles in how listeners experience sound. A 

purely Fourier-based analysis can therefore describe the physics of music but not its full 

psychological or aesthetic impact. Integrating perceptual models with spectral data remains an 



active area of research in music cognition and audio engineering (Reich, 2019). Extensions of 

Fourier analysis continue to push beyond its original boundaries. One such development is 

wavelet analysis, which provides better time localization for high-frequency events. Wavelets are 

particularly effective for analyzing transients, percussive sounds, and rapidly changing tones 

because they adapt their resolution dynamically: short time windows for high frequencies and 

longer ones for low frequencies (Morlet wavelet, n.d.). This flexibility makes wavelet analysis an 

important complement to traditional Fourier techniques. 

Mathematicians and theorists have also explored more geometric and topological 

perspectives on musical structure. Dmitri Tymoczko’s work on the geometry of chords and 

voice-leading, for instance, maps harmonic relationships onto multidimensional geometric 

spaces, allowing visualization of musical progressions as continuous trajectories (Tymoczko, 

n.d.). Similarly, Walker and Don (2020) use spectrograms and geometric models to connect 

harmonic structure in songs to the underlying organization of tonal space. These approaches, 

while different in mathematical form, share Fourier analysis’s fundamental goal: to reveal hidden 

order and symmetry in the apparently complex world of sound. 

In summary, Fourier analysis offers immense benefits in the study and practice of music 

by making audible phenomena mathematically visible and manipulable. At the same time, its 

challenges remind us that music is not only a signal but an experience—one that mathematics 

can describe with extraordinary precision, but never entirely contain. 
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