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Music and mathematics may seem like distant domains—one expressive, emotional, and
subjective; the other logical, precise, and abstract. Yet, at the level of sound, these domains
overlap almost completely. Fourier analysis offers a powerful lens: It shows that every musical
tone, however rich or complex, can be understood as a sum of simple waveforms. This article
explores how Fourier analysis connects to musical sound (pitch, harmony, timbre), how it is
applied in practice (signal processing, pitch detection, synthesis), and some of the broader

implications and limitations of this perspective.

1. Historical and conceptual background

1.1 Early connections: ratios, harmonics, and Pythagoras

The idea that music is mathematical is ancient. 6th century BCE mathematician
Pythagoras discovered that certain intervals, such as the octave and the fifth, correspond to
simple integer ratio of string lengths or frequencies (Hammond, 2011). For instance, halving a
string’s length doubles its pitch, creating an octave, and a % of a string produces a “perfect fifth”
above the original. These integer-ratio relationships lie behind the harmonic series, the infinite
sum of positive unit fractions (Hammond, 2011; The Math Behind Music, 2023).

When a musical instrument plays a note, it does not just produce a pure sine of the
fundamental frequency; rather, it emits many overtones or harmonics at integer multiples of that
fundamental. These harmonics add richness and “color,” also known as timbre, to the sound (The

Math Behind Music, 2023; Hammond, 2011).



However, Western music’s tuning often compromises its modulation systems—the pure
ratios of natural harmonics do not allow perfect transposition into all keys. The development of
equal temperament, dividing the octave into twelve equal semitones via the twelfth root of 2, is

one such compromise to allow modulation across keys, though it slightly shifts many harmonic

intervals. (The Math Behind the Music, 2023)

1.2 Fourier, heat, and harmonic analysis

Joseph Fourier (1758-1830) originally developed the theory of Fourier series as a tool to
solve problems in heat conduction. His insight was that an arbitrary “reasonable” periodic
function can be expressed as a possibly infinite sum of sines and cosines (Fourier, 1822/1878).
This notion later evolved into the broader domain of harmonic analysis, which related function
spaces, frequency decompositions, and transformations between time and frequency domains
(Duke Lab Manual, 2005).

Though Fourier’s initial motivation was thermal, his work turned out to have deep
relevance for acoustics and signal processing: A sound wave is a time-varying pressure function,
which can be analyzed using the same mathematics (Duke Lab Manual, 2005).

Deanna Lenssen, professor at the University of California, Los Angeles, and Nathan
Needell, a former student of Claremont Colleges, presented a clear introduction to this topic: By
starting with continuous Fourier transforms, then specializing to the discrete, sampled domain
relevant to digital audio, they demonstrate how one can extract musical structure, such as note

frequencies and chord content, from a recording (Lenssen & Needell, 2014).



2. Historical and conceptual background

2.1 Fourier series for periodic signals

A fourier series expansion writes a periodic function x(t) with period T as:
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Where the coefficients a,, b, are determined by integrals over one period. These coefficients
encode the amplitude of each harmonic. In music, one often compactly rewrites it in complex

exponential form:
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The magnitude |c;| gives the strength of the A-th harmonic. (Bell, Project Rhea; Lenssen &
Needell, 2014).
In practice, we truncate the infinite sum, because real musical signals have finite

bandwidth. Beyond a certain frequency, contributions are negligible.

2.2 Transition to discrete time: DFT and STFT

When working with digital audio, the continuous signal is sampled at discrete times

t,-nAt. One uses the Discrete Fourier Transform(DFT):

N-1
Xp =Y zpe N =0,1,...,N -1
n=0



The inverse transformation reconstructs x, from the X,. (Lessen & Needell, 2014).

To capture how the spectrum evolves over time—since music is not strictly stationary—
one uses the Short-Time Fourier Transform (STFT): apply a sliding window on segments of the
signal and compute DFTs on each segment. This gives a time-frequency representation, also
known as a spectrogram.

Computationally, the DFT is too slow for large N, so algorithms like Fast Fourier
Transform (FFT) reduce complexity from O(N?) to O(N log N) (Rocksmaths Fourier Analysis in

Music, 2025).

2.3 Theoretical bounds: Norm behavior and Hausforff-Young

When considering the relationship between a signal and its Fourier coefficients, the
Hausdorff-Young inequality offers an important bound: If f € L’ for1 < p < 2, thenits
Fourier transform lies in Lp', where % + % = 1 (Hausforff-Young inequality, n.d.).

This ensures that, under mild regularity, Fourier coefficients decay in an average sense,
which in musical signal terms implies that higher harmonics tend to have smaller amplitudes and
less perceptual weight (though the decay rate depends on the smoothness of the original
waveform). This mathematical grounding helps us understand why we often observe only a finite
number of dominant harmonics in musical spectra and why truncating to a finite number of

harmonics is often reasonable.



3. Historical and conceptual background

3.1 Pitch and fundamental frequency identification

A core musical problem is: Given a sound recording, how do we find the fundamental
pitch (i.e. the lowest active frequency)? The DFT/FFT can reveal a peak at the fundamental
frequency, but real instruments often have weak fundamentals or strong overtones, complicating
detection.

Tandon and Goncharov (2025) show that applying DFT to chromatic chords, scales, and
intervals allows one to identify pitch content and harmonic structure precisely. Their experiments
on both digitally generated and recorded samples confirm that DFT achieves accurate
fundamental identification and harmonic transcription (Tandon & Goncharov, 2025).

Lessen & Needell (2014) similarly use illustrative examples of chord signals, applying

DFT and mapping spectral peaks of pitches and chord structure.

3.2 Timbre and spectral fingerprinting

Timbre is what makes a flute playing A4 sound different from a violin playing A4, even
though their fundamental frequency is the same 440 Hz. Timbre arises from the strengths and
distribution of harmonics, and from dynamic behavior (attack, decay, envelope). Fourier analysis
reveals the spectral fingerprint of an instrument: the relative magnitudes of harmonic partials
(and even inharmonic components).

In “Analyzing Musical Tones with Fourier Transformation,” Hong compares trumpet,
piano, and flute spectra and shows how different decay rates and harmonic amplitudes

distinguish instruments acoustically (Hong, n.d.).



The idea of additive synthesis—summing sine waves at appropriate frequencies and
amplitudes—is effectively the inverse problem of Fourier analysis: One can reconstruct or
approximate a complex sound from its spectral components (Additive synthesis, n.d.). In digital

synthesis, this process is common, especially in modeling realistic instrument sounds.

3.3 Spectral texture and computer music

Fourier analysis lies at the heart of modern computer music and digital audio. Reich’s
article “Fourier at the Heart of Computer Music” revisits how Fourier theory underpins timbre
modeling, texture synthesis, and spectral manipulation in electronic music systems (in the 1960s
onward) (Reich, 2019).

In effect, composers and sound engineers can manipulate the spectral coefticients c;
directly to sculpt tone color, filter noise, create spectral morphing, or cross-synthesize timbres.

An example of a more advanced application is midiVERTO, a web tool that visualizes
tonality over time. It applies a discrete Fourier transform in the pitch-class domain (i.e. mapping
frequency bins to pitch classes) and shows trajectories of Fourier coefficients related to harmonic
function, triadicity, and diatonicity—making music theory, signal processing, and tonality more
accessible (Harasim, Affatato, & Moss, 2022).

In a more mathematical direction, Gazor & Shoghi (2020) apply Fourier-based spectral
vectors to link spectral amplitude envelopes with differential dynamic systems (via Hopf
bifurcations) to model tone coloring over time, blending nonlinear dynamics with spectral

analysis (Gazor & Shoghi, 2020).



4. Worked examples and demonstration

4.1 A simple example: synthetic tone + overtones

Suppose we construct a synthetic musical tone:

z(t) = Aj; sin(27 ft) + Ao sin(2m(21)t) + As sin(27(31)t)

Where f is, say, 440 Hz (A4), and A,, A,, A;are amplitudes (e.g. 1, 0.5, 0.3).

If we sample x(t) discreetly and run an FFT, we should observe three peaks in the
frequency at 440, 880. 1320 Hz, with magnitudes proportional to A;, A,, A,. This simple case
illustrates the core principle: Peaks in the spectrum correspond to individual sinusoids in the time

domain.

4.2 Real instrument: piano spectrum

A recorded note of a piano (say middle C, ~261.63 Hz) examined via STFT reveals a
strong peak at ~261 Hz and multiple harmonics (2%, 3%, 4%, etc.). The relative strengths of these
harmonics diminish, but anomalies appear due to inharmonicity (slight deviation from perfect
integer multiples owing to stiffness in strings).

By inspecting how the harmonic amplitudes fall off and how partials shift, one can
compare the spectral “envelope” of various notes to characterize the instrument's timbre and

response. Hong’s analysis uses such comparisons (Hong, n.d.).

4.3 Chord analysis
When multiple notes are played (a chord), their harmonic spectra intermingle. One

approach is to sum the separate spectra; peaks can cluster or overlap. Lenssen & Needell (2014)



use DFT to analyze chord signals, locating peaks and mapping them to pitch classes. This
process must manage aliasing, windowing effects, and spectral leakage, but using appropriate

window functions (Hamming, Hann) and sufficient resolution often produces robust results.

5. Benefits, challenges, and extensions

Fourier analysis offers an elegant and unifying framework that connects the time
domain—how sound waves evolve over time—with the frequency domain, which reveals the
structure of sound as a composition of individual frequencies. This duality allows researchers
and musicians to bridge the gap between mathematical abstraction and artistic expression. One of
the most significant benefits of this approach is that it provides a quantitative method for
understanding and manipulating sound. By transforming a signal into its frequency spectrum,
Fourier analysis makes it possible to isolate, identify, and modify the components that give rise
to pitch, timbre, and harmony. For engineers, this means being able to filter noise or design
sound systems with precision; for composers and producers, it means being able to shape tone
color and texture in ways that were once purely intuitive (Reich, 2019). Fourier analysis gives
musicians and mathematicians a shared language. It enables collaboration across fields that once
seemed unrelated: Digital signal processing, acoustics, computer science, and music theory now
rely on the same mathematical concepts of superposition, periodicity, and transformation.
Through techniques like spectral analysis and additive synthesis, Fourier theory makes it
possible not only to study sound but also to construct it from first principles. Composers who
work in electronic and computer music often use spectral coefficients directly to sculpt
sound—stretching, filtering, or morphing timbres in real time (Harasim et al., 2022).

Despite its versatility, the Fourier approach also faces several challenges and limitations.

One of the most fundamental is the time-frequency trade-off, often described through the



Heisenberg uncertainty principle. In practice, this means that it is impossible to know both the
exact frequency and the exact timing of a sound event with perfect precision. If one uses a wide
time window, the frequency resolution improves but temporal detail is lost; if the window is
narrow, time localization improves but the frequency spectrum becomes less precise. Music,
being highly dynamic, often requires a balance between these extremes. Techniques such as the
Short-Time Fourier Transform help mitigate this issue, but they do not eliminate it entirely.

Another challenge arises from the nonstationary nature of musical signals. Unlike steady
physical vibrations, musical tones change in pitch, loudness, and timbre over time. Real
instruments also deviate from ideal mathematical models because of inharmonicity, resonance,
and imperfections in tuning. For example, the overtones of a piano string are not exact integer
multiples of the fundamental frequency due to string stiffness, causing the sound spectrum to
spread slightly (Hong, n.d.). These deviations can complicate spectral analysis, producing small
errors in pitch or harmonic identification. There are also computational considerations. Digital
implementations of the Discrete Fourier Transform (DFT) can suffer from spectral leakage,
aliasing, and windowing artifacts if the sampling rate or analysis parameters are not chosen
carefully. These issues can distort the apparent frequency content of a signal and must be
addressed through proper signal preprocessing and parameter tuning (Lenssen & Needell, 2014).

In addition to these mathematical and computational limitations, it is important to
acknowledge the perceptual dimension of music. Human hearing does not perceive sound strictly
according to amplitude or frequency magnitude. Psychoacoustic factors—such as masking,
context, and harmonic expectation—play crucial roles in how listeners experience sound. A
purely Fourier-based analysis can therefore describe the physics of music but not its full

psychological or aesthetic impact. Integrating perceptual models with spectral data remains an



active area of research in music cognition and audio engineering (Reich, 2019). Extensions of
Fourier analysis continue to push beyond its original boundaries. One such development is
wavelet analysis, which provides better time localization for high-frequency events. Wavelets are
particularly effective for analyzing transients, percussive sounds, and rapidly changing tones
because they adapt their resolution dynamically: short time windows for high frequencies and
longer ones for low frequencies (Morlet wavelet, n.d.). This flexibility makes wavelet analysis an
important complement to traditional Fourier techniques.

Mathematicians and theorists have also explored more geometric and topological
perspectives on musical structure. Dmitri Tymoczko’s work on the geometry of chords and
voice-leading, for instance, maps harmonic relationships onto multidimensional geometric
spaces, allowing visualization of musical progressions as continuous trajectories (Tymoczko,
n.d.). Similarly, Walker and Don (2020) use spectrograms and geometric models to connect
harmonic structure in songs to the underlying organization of tonal space. These approaches,
while different in mathematical form, share Fourier analysis’s fundamental goal: to reveal hidden
order and symmetry in the apparently complex world of sound.

In summary, Fourier analysis offers immense benefits in the study and practice of music
by making audible phenomena mathematically visible and manipulable. At the same time, its
challenges remind us that music is not only a signal but an experience—one that mathematics

can describe with extraordinary precision, but never entirely contain.
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